3.5.31 \(\int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx\) [431]

Optimal. Leaf size=527 \[ \frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \sqrt {2} e^{7/2} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {2} e^{7/2} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i e^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i e^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[Out]

-1/2*I*e^(7/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*ta
n(d*x+c)))*sec(d*x+c)/a^(3/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+1/2*I*e^(7/2)*ln(a+2
^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)
/a^(3/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+I*e^(7/2)*arctan(1-2^(1/2)*e^(1/2)*(a-I*a
*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)*2^(1/2)/a^(3/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*
tan(d*x+c))^(1/2)-I*e^(7/2)*arctan(1+2^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*se
c(d*x+c)*2^(1/2)/a^(3/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)+4/3*I*e^2*(e*sec(d*x+c))^(3/2)/a/
d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 527, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {3581, 3580, 3576, 303, 1176, 631, 210, 1179, 642} \begin {gather*} \frac {i \sqrt {2} e^{7/2} \sec (c+d x) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {2} e^{7/2} \sec (c+d x) \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i e^{7/2} \sec (c+d x) \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i e^{7/2} \sec (c+d x) \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(7/2)/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

(((4*I)/3)*e^2*(e*Sec[c + d*x])^(3/2))/(a*d*(a + I*a*Tan[c + d*x])^(3/2)) + (I*Sqrt[2]*e^(7/2)*ArcTan[1 - (Sqr
t[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(a^(3/2)*d*Sqrt[a - I*a
*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (I*Sqrt[2]*e^(7/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c
 + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(a^(3/2)*d*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan
[c + d*x]]) - (I*e^(7/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + C
os[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*a^(3/2)*d*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*T
an[c + d*x]]) + (I*e^(7/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] +
 Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*a^(3/2)*d*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a
*Tan[c + d*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3576

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-4*b*(d^
2/f), Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3580

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[d*(Sec
[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]])), Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*
x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3581

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Dist[d^2*((m - 2)/(b^2*(m + 2*n)
)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a
^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integers
Q[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{7/2}}{(a+i a \tan (c+d x))^{5/2}} \, dx &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {e^2 \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx}{a^2}\\ &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {\left (e^3 \sec (c+d x)\right ) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)} \, dx}{a^2 \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {\left (4 i e^5 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}+\frac {\left (2 i e^4 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (2 i e^4 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {\left (i e^3 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i e^3 \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{a d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i e^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i e^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}-\frac {i e^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i e^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i \sqrt {2} e^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {2} e^{7/2} \sec (c+d x)\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {4 i e^2 (e \sec (c+d x))^{3/2}}{3 a d (a+i a \tan (c+d x))^{3/2}}+\frac {i \sqrt {2} e^{7/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {2} e^{7/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i e^{7/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i e^{7/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} a^{3/2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(11295\) vs. \(2(527)=1054\).
time = 30.19, size = 11295, normalized size = 21.43 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(e*Sec[c + d*x])^(7/2)/(a + I*a*Tan[c + d*x])^(5/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1323 vs. \(2 (421 ) = 842\).
time = 0.85, size = 1324, normalized size = 2.51

method result size
default \(\text {Expression too large to display}\) \(1324\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/6/d*(-1+cos(d*x+c))^3*(6*cos(d*x+c)^2*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+6*cos(
d*x+c)^2*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-12*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(
1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^2*sin(d*x+c)-12*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+
1+sin(d*x+c)))*cos(d*x+c)^2*sin(d*x+c)+6*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos
(d*x+c)*sin(d*x+c)+6*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)*sin(d*x+c)-1
2*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^3-12*arctanh(1/2*(1/(1+cos(d*x+c)
))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)^3-8*(1/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+3*I*arctanh(1/2*(1/(1
+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*sin(d*x+c)+3*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)
+1+sin(d*x+c)))*sin(d*x+c)+12*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^3-1
2*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)^3-6*I*arctanh(1/2*(1/(1+cos(d*x
+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^2+6*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin
(d*x+c)))*cos(d*x+c)^2-9*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)+9*I*cos(
d*x+c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-8*I*cos(d*x+c)*sin(d*x+c)*(1/(1+cos(d*x
+c)))^(1/2)-12*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)^2*sin(d*x+c)+12*arct
anh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)^2*sin(d*x+c)+6*arctanh(1/2*(1/(1+cos(d*
x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(d*x+c)*sin(d*x+c)-6*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+
c)+1+sin(d*x+c)))*cos(d*x+c)*sin(d*x+c)+3*sin(d*x+c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*
x+c)))-3*sin(d*x+c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-3*arctanh(1/2*(1/(1+cos(d*
x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))+8*(1/(1+cos(d*x+c)))^(1/2)-3*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos
(d*x+c)+1-sin(d*x+c)))+9*cos(d*x+c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))+9*cos(d*x+
c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+3*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(c
os(d*x+c)+1-sin(d*x+c)))-3*I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c))))*(a*(I*sin(d*x+c)
+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^4*(e/cos(d*x+c))^(7/2)/(4*I*sin(d*x+c)*cos(d*x+c)^2+4*cos(d*x+c)^3-I
*sin(d*x+c)-3*cos(d*x+c))/(1/(1+cos(d*x+c)))^(7/2)/sin(d*x+c)^7/a^3

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1423 vs. \(2 (374) = 748\).
time = 0.64, size = 1423, normalized size = 2.70 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/12*(6*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, sqrt(2)*si
n(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 6*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c))) + 1) + 6*I*sqrt(2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1,
 sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 6*I*sqrt(2)*arctan2(sqrt(2)*cos(1
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c))) + 1) - 6*sqrt(2)*arctan2(sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))), sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2
*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 6*sqrt(2)*ar
ctan2(-sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c))), -sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 3*I*sqrt(2)*log(2*sqrt(2)*sin(2/3*arctan2(sin(3/2*
d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*(sqrt(2)
*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3
/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*cos(1/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*s
in(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c)
, cos(3/2*d*x + 3/2*c))) + 1) - 3*I*sqrt(2)*log(-2*sqrt(2)*sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c)))^2 + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x
+ 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) +
1) - 3*sqrt(2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c
))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 3*sqrt(2)*log(2*cos(1/3*ar
ctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2
(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sqrt(2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos
(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*a
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*
d*x + 3/2*c))) + 2) + 3*sqrt(2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 16*I*cos(
3/2*d*x + 3/2*c) + 16*sin(3/2*d*x + 3/2*c))*e^(7/2)/(a^(5/2)*d)

________________________________________________________________________________________

Fricas [A]
time = 0.40, size = 492, normalized size = 0.93 \begin {gather*} -\frac {{\left (3 \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left ({\left (i \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {7}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {7}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {7}{2}\right )}\right ) - 3 \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left ({\left (-i \, a^{3} d \sqrt {\frac {4 i \, e^{7}}{a^{5} d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {7}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {7}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {7}{2}\right )}\right ) + 3 \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left ({\left (i \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {7}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {7}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {7}{2}\right )}\right ) - 3 \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left ({\left (-i \, a^{3} d \sqrt {-\frac {4 i \, e^{7}}{a^{5} d^{2}}} + \frac {2 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\frac {7}{2}} + e^{\left (2 i \, d x + 2 i \, c + \frac {7}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-\frac {7}{2}\right )}\right ) + \frac {8 \, \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-i \, e^{\frac {7}{2}} - i \, e^{\left (2 i \, d x + 2 i \, c + \frac {7}{2}\right )}\right )} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )}}{\sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{6 \, a^{3} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

-1/6*(3*a^3*d*sqrt(4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a^3*d*sqrt(4*I*e^7/(a^5*d^2)) + 2*sqrt(a/(e^(
2*I*d*x + 2*I*c) + 1))*(e^(7/2) + e^(2*I*d*x + 2*I*c + 7/2))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c)
+ 1))*e^(-7/2)) - 3*a^3*d*sqrt(4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a^3*d*sqrt(4*I*e^7/(a^5*d^2)) +
2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(7/2) + e^(2*I*d*x + 2*I*c + 7/2))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*
d*x + 2*I*c) + 1))*e^(-7/2)) + 3*a^3*d*sqrt(-4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((I*a^3*d*sqrt(-4*I*e^7
/(a^5*d^2)) + 2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(7/2) + e^(2*I*d*x + 2*I*c + 7/2))*e^(1/2*I*d*x + 1/2*I*c
)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-7/2)) - 3*a^3*d*sqrt(-4*I*e^7/(a^5*d^2))*e^(2*I*d*x + 2*I*c)*log((-I*a^3*
d*sqrt(-4*I*e^7/(a^5*d^2)) + 2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(e^(7/2) + e^(2*I*d*x + 2*I*c + 7/2))*e^(1/2*
I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-7/2)) + 8*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-I*e^(7/2) -
I*e^(2*I*d*x + 2*I*c + 7/2))*e^(1/2*I*d*x + 1/2*I*c)/sqrt(e^(2*I*d*x + 2*I*c) + 1))*e^(-2*I*d*x - 2*I*c)/(a^3*
d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(7/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(7/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(e^(7/2)*sec(d*x + c)^(7/2)/(I*a*tan(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(7/2)/(a + a*tan(c + d*x)*1i)^(5/2),x)

[Out]

int((e/cos(c + d*x))^(7/2)/(a + a*tan(c + d*x)*1i)^(5/2), x)

________________________________________________________________________________________